Dynamical Upper Bounds on Wavepacket Spreading

نویسنده

  • ROWAN KILLIP
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper bounds on wavepacket spreading for random Jacobi matrices

A method is presented for proving upper bounds on the moments of the position operator when the dynamics of quantum wavepackets is governed by a random (possibly correlated) Jacobi matrix. As an application, one obtains sharp upper bounds on the diffusion exponents for random polymer models, coinciding with the lower bounds obtained in a prior work. The second application is an elementary argum...

متن کامل

On the Dynamical Meaning of Spectral Dimensions

Dynamical Localization theory has drawn attention to general spectral conditions which make quantum wave packet diffusion possible, and it was found that dimensional properties of the Local Density of States play a crucial role in that connection. In this paper an abstract result in this vein is presented. Time averaging over the trajectory of a wavepacket up to time T defines a statistical ope...

متن کامل

Spreading Estimates for Quantum Walks on the Integer Lattice via Power-law Bounds on Transfer Matrices

We discuss spreading estimates for dynamical systems given by the iteration of an extended CMV matrix. Using a connection due to Cantero– Grünbaum–Moral–Velázquez, this enables us to study spreading rates for quantum walks in one spatial dimension. We prove several general results which establish quantitative upper and lower bounds on the spreading of a quantum walk in terms of estimates on a p...

متن کامل

The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian

We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower bounds for its fractal dimension in the large coupling regime. These bounds show that as λ → ∞, dim(σ(Hλ)) · log λ converges to an explicit constant (≈ 0.88137). We also discuss consequences of these results for the rate of propagation of a wavepacket that evolves according to Schrödinger dynamics generated by the Fibo...

متن کامل

On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds

We consider the Fisher-KPP equation with a non-local interaction term. We establish a condition on the interaction that allows for existence of non-constant periodic solutions, and prove uniform upper bounds for the solutions of the Cauchy problem, as well as upper and lower bounds on the spreading rate of the solutions with compactly supported initial data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001